\begin{tabbing} ESMachineAxiom($E$;$T$;$V$;$M$;${\it loc}$;${\it knd}$;${\it val}$; \\[0ex]${\it when}$;${\it after}$; \\[0ex]${\it sndr}$;${\it Trans}$;${\it Send}$;${\it Choose}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=(\=$\forall$$e$:$E$.\+\+ \\[0ex]($\lambda$$x$.${\it after}$($x$,$e$)) $=$ ${\it Trans}$(${\it loc}$($e$),${\it knd}$($e$),${\it val}$($e$),$\lambda$$x$.${\it when}$($x$,$e$)) $\in$ $x$:Id$\rightarrow$$T$(${\it loc}$($e$),$x$)) \-\\[0ex]\& (\=$\forall$$e$:$E$.\+ \\[0ex]islocal(${\it knd}$($e$)) \\[0ex]$\Rightarrow$ \=isl(${\it Choose}$(${\it loc}$($e$),act(${\it knd}$($e$)),$\lambda$$x$.${\it when}$($x$,$e$)))\+ \\[0ex]\& \=${\it val}$($e$)\+ \\[0ex]$=$ \\[0ex]outl(${\it Choose}$(${\it loc}$($e$),act(${\it knd}$($e$)),$\lambda$$x$.${\it when}$($x$,$e$))) \\[0ex]$\in$ $V$(${\it loc}$($e$),act(${\it knd}$($e$)))) \-\-\-\\[0ex]\& (\=$\forall$$e$:$E$.\+ \\[0ex]isrcv(${\it knd}$($e$)) \\[0ex]$\Rightarrow$ ($\langle$lnk(${\it knd}$($e$))$,\,$tag(${\it knd}$($e$))$,\,$(${\it val}$($e$))$\rangle$ $\in$ \=${\it Send}$\+ \\[0ex](${\it loc}$(${\it sndr}$($e$)) \\[0ex],${\it knd}$(${\it sndr}$($e$)) \\[0ex],${\it val}$(${\it sndr}$($e$)) \\[0ex],$\lambda$$x$.${\it when}$($x$,${\it sndr}$($e$))) $\in$ Msg($M$))) \-\-\- \end{tabbing}